This R markdown example demonstrates the basic functionality of the lans2r package.

Load data

To load data into R, export it from LANS which creates a folder for each analysis with sub folders dat containing the aggregated information about the different ROIs (in text file format) and mat containing the raw ion maps (in Matlab file format). Both of these can be imported easily with this package. For easier demonstration lans2r bundles a set of 3 analyses (folders analysis1, analysis2 and analysis3) with the package sources.

library(lans2r)
library(dplyr)
library(knitr)
folder <- system.file("extdata", "nanosims_data", package = "lans2r") # data base directory

ROI overview data

This loads the ROI overview data for the 3 analyses and assigns some additional information to the analyses (here rather random, column info). Since the parameters quiet=F indicates that information messages should be provided, it also outputs a summary of the loaded data.

## INFO: folder 'analysis1' read successfully.
##       Data for 37 ROIs with 4 ions recovered: 12C, 13C, 14N12C, 15N12C.
##       Z-stacks were loaded. Recovered 2 planes.
## INFO: folder 'analysis2' read successfully.
##       Data for 33 ROIs with 4 ions recovered: 12C, 13C, 14N12C, 15N12C.
##       Z-stacks were loaded. Recovered 2 planes.
## INFO: folder 'analysis3' read successfully.
##       Data for 34 ROIs with 4 ions recovered: 12C, 13C, 14N12C, 15N12C.
##       Z-stacks were loaded. Recovered 2 planes.

To calculate ratios and abundances, simply specificy which ions you would like to ratio. Note: for convenience, we make use of the pipe operator %>% for chaining multiple operations. For more information on the pipe, take a look at the magrittr package.

data <- data %>% 
  calculate_sums(c(`13C`, `12C`), c(`15N12C`, `14N12C`)) %>% 
  calculate_ratios(c(`13C`, `12C`), c(`15N12C`, `14N12C`), c(`13C+12C`, `15N12C+14N12C`)) %>% 
  calculate_abundances(c(`13C`, `12C`), c(`15N12C`, `14N12C`)) 
## INFO: 624 'ion_sum' values + errors calculated, 624 added (subset: all)
##       values added (stored in 'variable' column): '13C+12C' (312x), '15N12C+14N12C' (312x)
## INFO: 936 'ratio' values + errors calculated, 936 added (subset: all)
##       values added (stored in 'variable' column): '13C/12C' (312x), '13C+12C/15N12C+14N12C' (312x), '15N12C/14N12C' (312x)
## INFO: 624 'abundance' values + errors calculated, 624 added (subset: all)
##       values added (stored in 'variable' column): '13C F' (312x), '15N12C F' (312x)

For additional operations, one can use the more generic calculate function and provide custom functions for value and error calculations and name construction. Here, we have APE (atom percent enrichment) as an example. For additional examples on calculate, see the vignette("lans2r-calculate").

## INFO: 624 'APE' values + errors calculated, 624 added (subset: all)
##       values added (stored in 'variable' column): '13C APE [%]' (312x), '15N12C APE [%]' (312x)

Overview

Let’s take a look at the first couple of rows of the data frame.

data %>% head(n=10) %>% knitr::kable()
analysis info plane ROI data_type variable value sigma coord_x coord_y size pixels LW_ratio F13C_natural F15N_natural
analysis1 turtle all 1 ion_count 12C 1895850 1376.89869 17.38 192.93 0.83 353 2.45 0.0111 0.00366
analysis1 turtle all 2 ion_count 12C 1273919 1128.68020 18.39 175.25 0.75 290 1.57 0.0111 0.00366
analysis1 turtle all 3 ion_count 12C 1315417 1146.91630 40.38 168.26 0.70 250 1.66 0.0111 0.00366
analysis1 turtle all 4 ion_count 12C 1289955 1135.76186 42.05 207.80 0.72 267 2.16 0.0111 0.00366
analysis1 turtle all 5 ion_count 12C 1756159 1325.20149 42.92 147.66 0.81 334 2.50 0.0111 0.00366
analysis1 turtle all 6 ion_count 12C 1023934 1011.89624 46.56 103.93 0.67 232 2.11 0.0111 0.00366
analysis1 turtle all 7 ion_count 12C 5509 74.22264 52.29 22.77 1.32 893 1.09 0.0111 0.00366
analysis1 turtle all 8 ion_count 12C 1117870 1057.29372 61.77 120.06 0.62 195 2.39 0.0111 0.00366
analysis1 turtle all 9 ion_count 12C 1122839 1059.64098 63.38 146.02 0.65 217 2.02 0.0111 0.00366
analysis1 turtle all 10 ion_count 12C 1046665 1023.06647 74.39 98.29 0.66 221 2.23 0.0111 0.00366

Since this is now in long format so it’s easy to have both value and the sigma error, it’s hard to see line by line what is going on, let’s look just at analysis1 and recast the values into a wide format using the spread_data function.

data %>% spread_data() %>% head(n=10) %>% kable()
analysis info plane ROI coord_x coord_y size pixels LW_ratio F13C_natural F15N_natural 12C 13C 13C APE [%] 13C F 13C/12C 13C+12C 13C+12C/15N12C+14N12C 14N12C 15N12C 15N12C APE [%] 15N12C F 15N12C/14N12C 15N12C+14N12C 12C sigma 13C APE [%] sigma 13C F sigma 13C sigma 13C/12C sigma 13C+12C sigma 13C+12C/15N12C+14N12C sigma 14N12C sigma 15N12C APE [%] sigma 15N12C F sigma 15N12C sigma 15N12C/14N12C sigma 15N12C+14N12C sigma
analysis1 turtle all 1 17.38 192.93 0.83 353 2.45 0.0111 0.00366 1895850 24315 0.1562974 0.0126630 0.0128254 1920165 0.2413707 7839685 115568 1.0867256 0.0145273 0.0147414 7955253 1376.89869 0.0080692 0.0000807 155.932678 0.0000828 1385.70018 0.0001941 2799.9437 0.0042422 0.0000424 339.95294 0.0000437 2820.5058
analysis1 turtle all 2 18.39 175.25 0.75 290 1.57 0.0111 0.00366 1273919 16087 0.1370485 0.0124705 0.0126280 1290006 0.2259213 5625982 83997 1.1050562 0.0147106 0.0149302 5709979 1128.68020 0.0097706 0.0000977 126.834538 0.0001002 1135.78431 0.0002202 2371.9153 0.0050382 0.0000504 289.82236 0.0000519 2389.5562
analysis1 turtle all 3 40.38 168.26 0.70 250 1.66 0.0111 0.00366 1315417 17084 0.1721004 0.0128210 0.0129875 1332501 0.2262195 5802914 87388 1.1175912 0.0148359 0.0150593 5890302 1146.91630 0.0097460 0.0000975 130.705777 0.0001000 1154.34007 0.0002170 2408.9238 0.0049813 0.0000498 295.61461 0.0000513 2426.9944
analysis1 turtle all 4 42.05 207.80 0.72 267 2.16 0.0111 0.00366 1289955 16221 0.1318694 0.0124187 0.0125749 1306176 0.2229323 5773380 85690 1.0965188 0.0146252 0.0148423 5859070 1135.76186 0.0096900 0.0000969 127.361690 0.0000994 1142.88057 0.0002157 2402.7859 0.0049595 0.0000496 292.72854 0.0000511 2420.5516
analysis1 turtle all 5 42.92 147.66 0.81 334 2.50 0.0111 0.00366 1756159 22267 0.1420622 0.0125206 0.0126794 1778426 0.2427387 7218762 107741 1.1045652 0.0147057 0.0149251 7326503 1325.20149 0.0083379 0.0000834 149.221312 0.0000855 1333.57639 0.0002029 2686.7754 0.0044471 0.0000445 328.23924 0.0000458 2706.7514
analysis1 turtle all 6 46.56 103.93 0.67 232 2.11 0.0111 0.00366 1023934 13166 0.1595015 0.0126950 0.0128583 1037100 0.2303558 4434979 67186 1.1263043 0.0149230 0.0151491 4502165 1011.89624 0.0109934 0.0001099 114.743191 0.0001128 1018.38107 0.0002509 2105.9390 0.0057142 0.0000571 259.20262 0.0000589 2121.8306
analysis1 turtle all 7 52.29 22.77 1.32 893 1.09 0.0111 0.00366 5509 75 0.2331232 0.0134312 0.0136141 5584 0.1079555 51019 706 0.9989106 0.0136491 0.0138380 51725 74.22264 0.1540455 0.0015405 8.660254 0.0015827 74.72617 0.0015207 225.8739 0.0510173 0.0005102 26.57066 0.0005244 227.4313
analysis1 turtle all 8 61.77 120.06 0.62 195 2.39 0.0111 0.00366 1117870 13971 0.1243607 0.0123436 0.0124979 1131841 0.2294823 4858391 73758 1.1294536 0.0149545 0.0151816 4932149 1057.29372 0.0103784 0.0001038 118.198985 0.0001064 1063.88016 0.0002392 2204.1758 0.0054651 0.0000547 271.58424 0.0000563 2220.8442
analysis1 turtle all 9 63.38 146.02 0.65 217 2.02 0.0111 0.00366 1122839 14201 0.1389446 0.0124894 0.0126474 1137040 0.2325619 4818643 70550 1.0769784 0.0144298 0.0146411 4889193 1059.64098 0.0104149 0.0001041 119.167949 0.0001068 1066.32078 0.0002421 2195.1408 0.0053933 0.0000539 265.61250 0.0000555 2211.1520
analysis1 turtle all 10 74.39 98.29 0.66 221 2.23 0.0111 0.00366 1046665 13408 0.1548186 0.0126482 0.0128102 1060073 0.2328937 4484536 67210 1.1105762 0.0147658 0.0149871 4551746 1023.06647 0.0108538 0.0001085 115.792919 0.0001113 1029.59847 0.0002512 2117.6723 0.0056534 0.0000565 259.24892 0.0000582 2133.4821

Or for more specific overviews, for example, only the abundance and APE, only the data values (excluding the errors) and only the first plane of the first few ROIs

data %>% filter(data_type %in% c("abundance", "APE"), plane == "1", ROI < 4) %>% 
  spread_data(errors = FALSE) %>% kable()
analysis info plane ROI coord_x coord_y size pixels LW_ratio F13C_natural F15N_natural 13C APE [%] 13C F 15N12C APE [%] 15N12C F
analysis1 turtle 1 1 17.38 192.93 0.83 353 2.45 0.0111 0.00366 0.1645876 0.0127459 1.058593 0.0142459
analysis1 turtle 1 2 18.39 175.25 0.75 290 1.57 0.0111 0.00366 0.1446352 0.0125464 1.090331 0.0145633
analysis1 turtle 1 3 40.38 168.26 0.70 250 1.66 0.0111 0.00366 0.1711441 0.0128114 1.092983 0.0145898
analysis2 jetpack 1 1 25.28 128.10 1.38 976 1.04 0.0111 0.00366 0.2299359 0.0133994 2.633973 0.0299997
analysis2 jetpack 1 2 28.10 203.98 0.66 221 2.29 0.0111 0.00366 0.5019285 0.0161193 3.283767 0.0364977
analysis2 jetpack 1 3 40.89 21.97 0.66 225 1.73 0.0111 0.00366 0.4311799 0.0154118 3.361709 0.0372771
analysis3 pizza 1 1 31.42 209.93 0.82 348 3.32 0.0111 0.00366 0.4568719 0.0156687 3.324170 0.0369017
analysis3 pizza 1 2 32.36 37.12 0.73 276 1.89 0.0111 0.00366 0.2947689 0.0140477 3.316543 0.0368254
analysis3 pizza 1 3 40.78 151.29 1.50 1158 1.55 0.0111 0.00366 0.0854406 0.0119544 2.731920 0.0309792

Plotting

Plot all the data using the ggplot package.

library(ggplot2)
data %>% 
  ggplot() +
  aes(size, value, color = paste(analysis, info), shape = plane) + 
  geom_errorbar(aes(ymin = value - 2*sigma, ymax = value + 2*sigma), colour="black", width = 0) +
  geom_point(size=3) + 
    labs(x = expression("ROI size ["*mu*"m"^2*"]"), y="", 
         title = expression("ROI summary (2"*sigma*" error bars, may be smaller than symbols)"),
         color = "Analysis") + 
  facet_wrap(~variable, scales="free", nrow = 2) + 
  theme_bw()

Focus in on the combined counts (not the individual planes from the z-stack) and look just at ratios:

last_plot() %+% (data %>% filter(plane == "all", data_type == "ratio"))

Ion maps

Again, loading the ion maps for all 3 analyses.

maps <- 
  load_LANS_maps (
    analysis = c("analysis1", "analysis2", "analysis3"),
    base_dir = folder
  ) 
## INFO: folder 'analysis1' read successfully.
##       Ion map data for 256 x 256 pixel frame (10.014 microm^2) for 4 ions recovered: 12C, 13C, 14N12C, 15N12C.
##       37 ROIs identified in the frame.
## INFO: folder 'analysis2' read successfully.
##       Ion map data for 256 x 256 pixel frame (10.014 microm^2) for 4 ions recovered: 12C, 13C, 14N12C, 15N12C.
##       33 ROIs identified in the frame.
## INFO: folder 'analysis3' read successfully.
##       Ion map data for 256 x 256 pixel frame (10.014 microm^2) for 4 ions recovered: 12C, 13C, 14N12C, 15N12C.
##       34 ROIs identified in the frame.

The data in these looks similar to the summary data frame except that it is broken out pixel by pixel:

maps %>% head(n=10) %>% kable()
analysis x.px y.px frame_size.px x.um y.um frame_size.um variable data_type value sigma ROI
analysis1 1 1 256 0.0391172 0.0391172 10.014 12C ion_count 1721 41.48494 0
analysis1 1 2 256 0.0391172 0.0782344 10.014 12C ion_count 1694 41.15823 0
analysis1 1 3 256 0.0391172 0.1173516 10.014 12C ion_count 1508 38.83298 0
analysis1 1 4 256 0.0391172 0.1564688 10.014 12C ion_count 1297 36.01389 0
analysis1 1 5 256 0.0391172 0.1955859 10.014 12C ion_count 1136 33.70460 0
analysis1 1 6 256 0.0391172 0.2347031 10.014 12C ion_count 786 28.03569 0
analysis1 1 7 256 0.0391172 0.2738203 10.014 12C ion_count 702 26.49528 0
analysis1 1 8 256 0.0391172 0.3129375 10.014 12C ion_count 453 21.28380 0
analysis1 1 9 256 0.0391172 0.3520547 10.014 12C ion_count 319 17.86057 0
analysis1 1 10 256 0.0391172 0.3911719 10.014 12C ion_count 220 14.83240 0

To make it easier to plot these kind of maps, lans2r provides a convenience functoin plot_maps but of course this could be adjusted as needed (look at the source code to see how this one is made). By default ion counts are normalized for each ion so they can be visualized on the same scale.

plot_maps(maps)

Focusing in on just one ion, we can ditch the normalization, and let’s also not draw ROIs for a direct look. Also, because it’s a ggplot, all ggplot modifications of the plot are fair game.

plot_maps(maps %>% filter(variable == "14N12C", analysis %in% c("analysis1", "analysis2")), 
          normalize = FALSE, draw_ROIs = FALSE) + 
  theme(legend.position = "right") + labs(fill = "ion count")

Future directions

Note that for plotting maps, lans2r does not (yet) support any smoothing so although the plot_maps function theoretically supports plotting ratios and abundances as well (which can be calculated from the maps data the same way using calculate_ratios and calculate_abundances), in practice this does not work so well because individual pixels often have extreme values offsetting proper scaling. This might be part of future expansions if the package sees a lot of use so please email with suggestions if you find it helpful.